Independent Research (NCBI profile)

  1. Joiner, C. M.; Levine, Z.; Aonbangkhen, C.; Woo, C. M.; Walker, S. “Aspartate residues within TPR lumen drive O-GlcNAc transferase substrate selection.” J Am Chem Soc, 2019, in press.

  2. Flaxman, H. A.; Chang, C. F.; Wu, H. Y.; Nakamoto, C. H.; Woo, C. M. "A Binding Site Hotspot Map of the FKBP12–Rapamycin–FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics." J Am Chem Soc, 2019, in press.

  3. Darabedian, N.; Gao, J.; Chuh, K.N.; Woo, C.M.; Pratt, M.R. "The metabolic chemical reporter 6-azido-6-deoxy-glucose further reveals the substrate promiscuity of O-GlcNAc transferase and catalyzes the discovery of intracellular protein modification by O-glucose." J Am Chem Soc, 2018, 140, 7092.

  4. Chang, C.; Mfuh, A.; Gao, J.; Wu, H.; Woo, C.M. "Synthesis of an electronically-tuned minimally interfering alkynyl photo-affinity label to measure small molecule–protein interactions." Tetrahedron, 2018, 74, 3273.

  5. Gao, J.; Mfuh, A.; Amako, Y.; Woo, C. M. "Small molecule interactome mapping by photo-affinity labeling reveals binding site hotspots for the NSAIDs." J Am Chem Soc, 2018, 140(12), 4259.

  6. Woo, C. M*.; Lund, P. J.*; Huang, A. C.; Davis, M. M.; Bertozzi, C. R.; Pitteri, S. J. “Mapping and quantification of over 2,000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics (IsoTaG).” Mol. Cell. Proteomics 201817(4), 764. *Authors contributed equally.

  7. Flaxman, H. A.; Woo, C. M. "Mapping the small molecule interactome by mass spectrometry." Biochemistry, 2018, 57, 186.

Prior Research

  1. Woo, C. M.; Felix, A.; Byrd, W.; Zuegel, D.; Ishihara, M.; Azadi, P.; Iavarone, A. T.; Pitteri, S. J.; Bertozzi, C. R. “Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O‑Glycopeptides from Whole Cell Proteomes.” J. Prot. Res. 2017, 16, 1706.

  2. Woo, C. M.; Felix, A.; Zhang, L.; Elias, J. E.; Bertozzi, C. R. “Isotope targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars.” Anal. Bioanal. Chem. 2017, 409, 579.

  3. Sheta, R.; Woo, C. M.; Roux-Dalvai, F.; Fournier, F.; Bourassa, S.; Droit, A.; Bertozzi, C. R.; Bachvarov, D. “A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.” J. Proteomics 2016, 145, 91.

  4. Sheta, R.; Roux-Dalvai, F.; Woo, C. M.; Fournier, F.; Bourassa, S.; Bertozzi, C. R.; Droit, A.; Bachvarov, D. “Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells” Data Brief 2016, 8, 342.

  5. Woo, C. M.; Li, Z.; Paulson, E.; Herzon, S. B. “Structural Basis for DNA Cleavage by the Potent Antiproliferative Agent (–)-Lomaiviticin A.” Proc. Natl. Acad. Sci. 2016, 11, 2851.

  6. Woo, C. M.; Bertozzi, C. R. “Isotope Recoding for Intact Glycoproteomics” Curr. Protocols Chem. Bio. 2016, 8, 59.

  7. Woo, C. M.; Iavarone, A. T.; Spiciarich, D. R.; Palaniappan, K. K.; Bertozzi, C. R. “Isotope Targeted Glycoproteomics (IsoTaG): A Mass Independent Platform for Intact N- and O-Glycopeptide Discovery” Nat. Meth. 2015, 12, 561.

  8. Woo, C. M.; Ranjan, N.; Arya, D. P.; Herzon, S. B. “Analysis of Diazofluorene DNA Binding and Damaging Activity. DNA Cleavage by a Synthetic Monomeric Diazofluorene.” Angew. Chem. Int. Ed. 2014, 53, 9325.

  9. Colis, L. C.; Woo, C. M.; Hegan, D. C.; Li, Z.; Glazer, P. M.; Herzon, S. B. “The Cytotoxicity of (–)-Lomaiviticin A Arises from Induction of Double-strand Breaks in DNA.” Nat. Chem. 2014, 6, 504.

  10. Woo, C. M.; Gholap, S. L.; Herzon, S. B. “Insights into Lomaiviticin Biosynthesis. Isolation and Structure Elucidation of (–)-Homoseongomycin.” J. Nat. Prod. 2013, 76, 1238.

  11. Woo, C. M.; Gholap, S. L.; Lu, L.; Kaneko, M.; Li, Z.; Ravikumar, P. C.; Herzon, S. B. “Development of Enantioselective Synthetic Routes to (–)-Kinamycin F and (–)-Lomaiviticin Aglycon.” J. Am. Chem. Soc. 2012, 134, 17262.

  12. Woo, C. M.; Beizer, N. E.; Janso, J. E.; Herzon, S. B. “Isolation of Lomaiviticins C–E. Transformation of Lomaiviticin C to Lomaiviticin A, Complete Structure Elucidation of Lomaiviticin A, and Structure–Activity Analyses.” J. Am. Chem. Soc. 2012, 134, 15285.

  13. Mulcahy, S. P.; Woo, C. M.; Ding, W.; Ellestad, G. A.; Herzon, S. B. “Characterization of a Reductively-Activated Elimination Pathway Relevant to the Biological Chemistry of the Kinamycins and Lomaiviticins.” Chem. Sci. 2012, 3, 1070.

  14. Herzon, S. B.; Woo, C. M. “The Diazofluorene Antitumor Antibiotics: Structural Elucidation, Biosynthetic, Synthetic, and Chemical Biological Studies.” Nat. Prod. Rep. 2012, 29, 87.

  15. Herzon, S. B.; Lu, L.*; Woo, C. M.*; Gholap, S. L. “11-Step Enantioselective Synthesis of (–)-Lomaiviticin Aglycon.” J. Am. Chem. Soc. 2011, 133, 7260. *Authors contributed equally.

  16. Woo, C. M.; Lu, L.; Gholap, S. L.; Smith, D. R.; Herzon, S. B. “Development of a Convergent Entry to the Diazofluorene Antitumor Antibiotics: Enantioselective Synthesis of Kinamycin F.” J. Am. Chem. Soc. 2010, 132, 2540.

  17. Gholap, S. L.; Woo, C. M.; Ravikumar, P. C.; Herzon, S. B. “Synthesis of the Fully Glycosylated Cyclohexenone Core of Lomaiviticin A.” Org. Lett. 2009, 11, 4322.

  18. Devji, T.; Reddy, C.; Woo, C. M.; Awale, S.; Kadota, S.; Carrico-Moniz, D. “Pancreatic Anticancer Activity of a Novel Geranylgeranylated Coumarin Derivative.” Bioorg. Med. Chem. Lett. 2011, 21, 5770.

  19. Boonya-udtayan, S.; Yotapan, N.; Woo, C. M.; Bruns, C. J.; Ruchirawat, S.; Thasana, N. “Synthesis and biological activities of azalamellarins.” Chem. Asian. J. 2010, 5, 2113.

  20. Loehlin, J. H.; Lee, M; Woo, C. M. “Hydrogen-bond patterns and the structures of 1,4-cyclohexanediol: 2:1 cis:trans-1,4-cyclohexanediol.” Acta Cryst. 2008, B64, 583.

Manuscripts in Progress

  1. Ramirez, D. H.; Aonbangkhen, C.; Wu, H. Y.; Naftaly, J. A.; Tang, S.; O’Meara, T. R.; Woo, C. M. “Selective induction of protein O-GlcNAcylation in cells by a proximity-directed O-GlcNAc transferase.”Manuscript under review.

  2. Miyamoto, D. K.; Flaxman, H. A.; Wu, H. Y.; Gao, J.; Woo, C. M. “A cleavable chelation-assisted biotin probe enables the discovery of a celecoxib binding site on prostaglandin E synthase.” Manuscript under review.

  3. Flaxman, H. A.; Miyamoto, D. K.; Woo, C. M. “Small molecule interactome mapping by photo-affinity labeling (SIM-PAL) to identify and map the interactions of small molecules on a proteome-wide scale.” Manuscript under review.

  4. Schwein, P.; Woo, C. M. “The interplay between O-GlcNAc and phosphorylation on kinases.”Manuscript in preparation.